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1 Introduction

Dedekind’s n-function is defined by
n(z) = g7 H(l —¢7), where g = €™, Tm(z) > 0.
j=1

For certain values of d, the expansion of n%(z) in powers of ¢ has a particularly
simple form. For example, the cases d = 1 and d = 3 are due to L. Euler and
C. G. J. Jacobi, respectively:

n(24z) = > (1)@t
j=—00
°82) = D (4j+1)qWr
Jj=—00
For d = 8 we have
1 AP 2
(122) = o > (20 Y (6] -2)¢ ¥
1=—00 Jj=—00
1 = .. 2 = e
5 2 QDM YT (654 1)
1=—00 Jj=—00

and there are analogous formulas for d = 10 and 14 in terms of double sums.
The case d = 8 was first considered by F. Klein and R. Fricke [7, p. 373]. The
formula for d = 10 was discovered by L. Winquist [17], who used it to give an
elementary proof of S. Ramanujan’s congruence

p(11m + 6) = 0 (mod 11),

where p(n) is the number of partitions of n. F. J. Dyson [5, p. 637] reports that
the case d = 14 was discovered by A. O. L. Atkin, and furthermore that Atkin
had a formula for d = 26. Apart from a special case cited by Dyson [5, p. 651],
no details of Atkin’s work on d = 26 have been published.

Dyson found that there are elegant multiple series expansions for d = 3, 8,
10, 14, 15, 21, 24, 26, 28, 35, 36, .... At about the same time, I. G. Macdonald
[10] discovered there is an elegant multiple series expansion for any value of d
which is the dimension of a finite dimensional simple Lie algebra. Macdonald’s
results include all of the numbers on Dyson’s list, except d = 26. In [8] and [9],
V. E. Leininger and S. C. Milne utilized [11] and multiple basic hypergeometric
series techniques to derive new non-trivial explicit multiple series expansions for
additional infinite families of values of d not in [10], but not for d = 26. They



also simplified Macdonald’s results corresponding to affine root systems of type
Ay
The purpose of this article is to prove a formula for 7%¢(z) in terms of a

double series. A special case of our formula is as follows. Suppose 12n + 13 is
prime. Let a 4 ib and ¢ + id be the unique Gaussian integers which satisfy the
conditions

a’ +b% =24n+26, a,b=1(mod 6), a < b,

4+ 3d*> =36n+39, d=1(mod 6), ¢> 0.

Then the coefficient of ¢" in []72, (1 —¢7)* is

1 (_1)(a+b72)/6
263411213 ( 26

(_1)(c+d71)/6
36

Re ((a +ib)"?) + Re ((c + id\/§)12>) .

This is different from the formula of Atkin quoted by Dyson. As an example,
when n = 2 we have a + tb = —5 + 7i and ¢ + id = 6 — 57, so the coefficient of
¢* in [[;Z, (1 — ¢7)%° is therefore

1

S3I1IE13 (614 Re (=5 +7)'2) + —=_Re ((6 - 5i\/§)12)>

729

= (102504 141312
s ayg (1025046350 + 1413128800)

= 299.

Our proof is based on the observation that n?(z) may be expressed as a
product of two theta functions in two different ways:

2
e’} 0 e}

ORS IDORCIAISEE I IDODNC VA N IDDNC WY

j=—00 j=—oc0 j=—o00

Atkin’s proof [1] uses properties of n'%(2)E?(z) and n'*(2)Es(2), where E4 and
Eg are Eisenstein series of weights 4 and 6, respectively. Atkin’s notes [1] in-
dicate that he discovered his formula for ?6(z) in 1965, and in 1966 he found
another formula, different from the one quoted by Dyson [5, p. 651]. For a
published proof of a formula for n?5(2), see the paper by J.-P. Serre [16].

2 Statement of results
Let m and n be real numbers and define

o) = 3 () apmines

=0
= mb —66m°n + 495m*n? — 924m>n> + 495m2n* — 66mn° + nS.



Observe that
f(m*,n®) = Re ((m +in)'?).

Ramanujan’s Eisenstein series are

oo

i

P = 1-uy 2T

P

— ¢

— 14240 ,

Q +240) 75
Jj=1

R = 1-5045 L9

=

We will prove the following identities:
Lemma 1
n*(z )(3999@3 — 4000R?)

Z i 1)+ f (6i+1)% (654 1)\ (6i1)24(6j+1)2]/24
2 2 )1 ‘

i=—00 j=—00
Lemma 2

n*(z )(5439Q3 — 5438R?)

Z Z 7,+jf 1242 (6j+1)2) qi2+(6j+1)2/12.

i=—o00 j=—oc0

If we add these results and use the fact that [13], [15, pp. 140 — 144]
Q* — R* = 1728n**(2),

we obtain our main result:

Theorem 3

16308864 n26( )

_ Z Z mf( (6i +1)° ’(61'“)2) (6P (65+1)2)/24

i=—00 j=—00 2
00 00 ' 2 . )
+ )0 ) (—1)T (1282, (65 + 1)?) ¢ TETTDT12,
i=—00 j=—00



By comparing coefficients on both sides we readily obtain:

Corollary 4
Let

00
nr(z) — qT/24 z:pr(n)qn7
n=0

where the coefficients p.(n) are defined by

(1 _ qm)r — Zpr(n)qn.
m=1 n=0
Then
1 (a+p-2)/6p (2 P
16308864 pos(n) = > (1) f <27 2)

a24+B82=24n+26
a, B=1 (mod 6)

Cnesnsep (1
- > (—1) fl50%)

~24352=36n+39
~=0 (mod 6), §=1 (mod 6)

3 Proof of Lemma 1

Let -
Z (_1)j(6j+1)2£q(6j+1)2/24
Voo = T
Z (—1)1 gGi+1)7*/24
j=—0o0
Using the relation
dvs
Vara = PVae 24075

and the Ramanujan differential equations for P, @ and R, Ramanujan [14, p.
369] showed that

Vo = 1,

Vo = P

Vi = 3P%-2Q,

Vs = 15P3 —30PQ + 16R,

Vs = 105P* —420P2Q + 448PR — 132Q?,



Vio = 945P° — 6300P3Q + 10080P%R — 5940PQ? + 1216QR,
Vie = 10395P% —103950P*Q + 221760P3R
—196020P?Q? + 80256 PQR — 2712Q°% — 9728 R2. (1)

Observe that
VoVia — 66V2Vig + 495V, Vs — 924V 4 495Vs Vi — 66Vi0Va + Via Vi
= 64(3999Q° — 4000R?).
If we multiply this by n?(2)/64 we complete the proof of Lemma 1.

O
4 Proof of Lemma 2
The key to proving Lemma 2 is to write
?z) = ¢@ [J(1-¢)?
j=1
_ 1M 25 - (1_qj)2
= q'* H(l—qJ)H (1_ Qj)
j=1 j=1 q
e . . 2 o .9
_ Z (_1)]q(6]+1) /12 Z (—1)7¢7 | . (2)
j=—o00 j=—00
Let - -
2 e,
@)= > ¢, v@=> U7
j=—00 7=0
and define b
2 q
z=(q)°, x=16¢q .
@ v(g)*
Let
[%S) ) . ,
Z (—1)](6j+ I)ZZq(GJJrl) /12
Vge = = P~ = ‘/26((12),
Z (—1)d g(Gi+1)?*/12
Jj=—00
D (=17 (125%) ¢
Wae = ]:70000
3 (1"
j=—0o0



We will express Vo and Wy in terms of P, z and «.

From [3, pp. 126-127] we have

Using these in (1) we obtain

Vo
2V,
4V,

8V

16V

32?10

64V 12

P(qz) = %(P—l—zz(l—i—x)),
Ql¢*) = 1-z+a?),
R(¢?) = 26(1+x)(1—g)(1—2x).
17
P+ 22(1+4z),

3P? + 6P2%(1 + ) — 24(5 — 14z + 52?),

15P3 +45P%22(1 + x) — 152* P(5 — 142 + 52%)
+2%(1 + 2)(2322 — 170z + 23),

105P* 4 420P322 (1 + x) — 210P%2*(5 — 14z + 527)
+28Pz5(1 + 2)(23 — 170z + 2327%)
—28(103 — 11722 + 164582 — 117223 + 1032%),

945P° + 4725 P*22(1 + ) — 3150P32*(5 — 14 + 52%)
+630P%2%(1 + x)(23 — 170z + 232?)
—45P2z%(103 — 11722 4 164582% — 11722% + 103z*)
+210(1 + 2)(257 — 78522 — 34626627 — 78522 + 257x%),

10395P% + 62370P%22(1 + ) — 51975 P*2%(5 — 14z + 52?)
+13860P325(1 + x)(23 — 170x + 2327)
—1485P%2%(103 — 1172 + 1645822 — 11722% + 1032*)
+66Pz10(1 + 2)(257 — 78522 — 34626622 — 78522 + 257x%)
+212(4387 + 122822 — 108404672% — 1701038823 — 108404672*
+122822° 4 43872°).

Now we will express Wy, in terms of P, z and z. First, observe that Wy = 1.
Next, from [3, pp. 120-129] we have

p(—q) = 2% (1 - 2)1,



dx

qd—q =2%z(1 - 2),

d
12qd—z = Pz +2*(5z — 1),
Q = 2*(1 4 14z + 2?),
R=25(1+2)(1 — 34z + z?).

Using these we obtain

d
Wy = 12qdfqlog\/¢(—q)

d 1
= 3qd—q logz(1 —x)2
3 dz 3 dx

zqdq 2(1 — ) qdiq
= %(P—ZZ—ZZz).

If we apply qd%{ to the equation defining Wy, and simplify, we obtain the differ-
ential recurrence relation

d
Wapro = WolWap + 12qd7qW2e.

Additional values of Wy, can be computed using the differential recurrence re-
lation together with Ramanujan’s differential equations for P, @Q and R. We
obtain:

4

§W4 = P2 _2P2*(1+2)+2*(1 — 22z + 2?),

8

We = 5P% —15P%2%(1 4+ z) + 15P2* (1 — 22z + 2?)

—25(1 + 2)(5 + 2262 + 52?),

1
§6W8 = 35P* — 140P32%(1 + ) + 210P?2*(1 — 222 + %)
—28P2%(1 4 2)(5 + 2262 + 527%)
+28(35 — 25962 — 699022 — 25962 + 352%),
32 5 4.2 3.4 2
3 Wi = 35P° —1T5P'2%(1 + @) + 350P%2 (1 — 222 + 27)

—70P%25(1 4 2)(5 + 226z + 52%)
+5P28(35 — 25962 — 6990x2 — 25962° + 35z%)



—21%(1 + 2)(35 — 196z + 185462% — 1962 + 352%),

4
%Ww = 385P% —2310P5%2%(1 + x) + 5775P*2*(1 — 22z + 2?)
—1540P32%(1 + 2)(5 + 2261 + 52°)
+165P228(35 — 25962 — 699022 — 25962 + 35x%)
—66P2"(1 + x)(35 — 1962> + 185462 — 1962° + 352%)

+212(385 + 18078z — 5038522 — 8411802° — 503852* + 18078z + 385x).

Observe that

VoWia — 66V Wig + 495V, Wy — 924V W + 495V Wy — 66V 10Wo + V12 W
= 2'%(1 + 5873462 — 234862527 4 35266522° — 23486252* 4 5873462° + x°)
= 54392'%(1 + 14x + 2%)3 — 54382'2(1 + )% (1 — 34z + 2?)?
= 5439Q°% — 5438R2.

If we multiply this by n?(z) and use (2) we complete the proof of Lemma 2.
O

5 Consequences

5.1 Lacunarity

A series ¢” ZZOZO anq™ is called lacunary if almost all of the coefficients a,, are
zero, i.e., limy o w = 0, where M (N) is the number of n < N with a,, # 0.
Serre [16] showed that the only even values of d for which n¢(z) is lacunary are
d=2,4, 6,8, 10, 14 or 26. It is still unknown if there are any odd values of
d, besides d = 1 and 3, for which n%(z) is lacunary.

The series representation given in Theorem 3, together with a theorem of

Landau [2, p. 244, Th. 10.5], imply that 1?(2) is lacunary.

5.2 The Hecke operator
If p = 11 (mod 12), then Corollary 4 together with the elementary method used

in [4] imply
13 n
D26 <Zm + E(P2 - 1)) = p"p2s <p) .

This provides an elementary derivation of the case r = 26 of the following the-
orem of Newman [12]:

Theorem 5



Suppose that r is one of the numbers 2, 4, 6, 8, 10, 14, 26. Let p be a prime
> 3 such that r(p+1) = 0 (mod 24). Let A = (p?> —1)/24, and define p.(z) =0
if © is not a non-negative integer. Then

n
pr (pn + 7A) = (—p) /D 1p, (p) .

Furthermore there are no other values of r for which the theorem is true.

Elementary proofs for the cases r = 2, 4, 6, 8, 10 and 14 of Newman’s the-
orem were given in [4].

5.3 Values of n for which pys(n) =0

The explicit formula in Corollary 4 may be used to prove two conditions given
by Serre [16, p. 213] which imply pag(n) = 0.

Proposition 6

Suppose that the factorization of 12n + 13 into distinct primes contains at least
one prime congruent to —1 modulo 4 raised to an odd power, and also at least
one prime congruent to —1 modulo 3 raised to an odd power. Then pag(n) = 0.

Proof
Let 12n+13 =[], p*» be the factorization of 12n+13 into primes. Let ro(m) and

s(m) denote the number of solutions in integers of #2+y? = m and 2%2+3y? = m,
respectively. Two classical results [6] are, for any positive integer m,

ro(m) = 4(dia(m)—dza(m)), (3)
s(m) = 2(di3(m) —da3(m)) + 4(ds,12(m) — ds,12(m)), (4)

where dj 1 (m) denotes the number of divisors of m which are congruent to j
modulo k. It follows that

14 (1)
r24n+26) = 4 J[ u+1 ] % (5)
p=1 (mod 4) p=—1(mod 4)
14 (=1)*
s@on+39) = 2 [ u+1 ] 1+ =D (6)
p=1 (mod 3) p=—1(mod 3)

Consequently, 72(24n + 26) = s(36n + 39) = 0. Therefore the sums in Corollary
4 are empty and it follows that pag(n) = 0.
O

Proposition 7

10



Suppose 12n+13 is a square and all the prime factors of 12n+13 are congruent
to —1 modulo 12. Then pag(n) = 0.

Proof
Write 12n + 13 = 22 = Hp p», where the product is over primes p = —1
(mod 12), and all the exponents A, are even. Without loss of generality we can
assume x = 1 (mod 12). Then (5) implies ro(26n+24) = 4, and in fact the repre-
sentations are 24n + 26 = (z)? + (+x)2. Similarly, (6) implies s(36n +39) = 2,
and the representations are 36n + 39 = (0)? + 3(£x)2. Corollary 4 implies

.’£2 1'2
16308864 pag (n) = f (27 2) bF(0,2%) = 212 — 412 = 0,

5.4 The case when 12n + 13 is prime

For this section, let us consider the case when 12n + 13 is prime, in which case
we write p = 12n + 13. Corollary 4 implies

a2 ﬂZ
16308864 pag(n) = ST (cyylerssop (20
2 s 2° 2

a®+pB4=2p

a, B=1 (mod 6)

_1\(v+s-1)/6 ﬁ 2
+ > (-1) F59°)

v2+352=3p
=0 (mod 6), §=1 (mod 6)
Equation (3) implies that o + 3% = 2p has exactly eight solutions in integers,
say (o, ) = (fa, £b), (£b, +a), where a, b = 1 (mod 6) and a < b. Two of these
eight solutions satisfy the conditions «, 8 = 1 (mod 6), namely («, 3) = (a,b)
and (a, 8) = (b, a). Therefore

2 32 2 2

_yeta=2)/6 4 (@7 BTN o0 (y@wb-2ysep (@ 0T
2 e flg %) =21 55

a“+pB<=2p

«,B=1 (mod 6)

Similarly, equation (4) implies that v2 4 362 = 3p has exactly four solutions in
integers, say (v,0) = (¢, £d), where ¢ > 0 and d = 1 (mod 6). Two of these
four solutions satisfy v = 0 (mod 6), § = 1 (mod 6), namely (v, ) = (¢,d) and
(v,6) = (—¢,d). Therefore

2 2
3 (—1)0r+o-1/6 (7752) = 9(—1)(ctd-D/6 <c7d2> _
~v2+362=3p 3 3

¥=0 (mod 6), §=1 (mod 6)

Therefore we have proved a result which is equivalent to the formula mentioned
in the introduction:

11



Theorem 8
Let p = 12n + 13 be prime. Let (a,b) be the unique solution in integers of

a®+b*=2p, a,b=1(mod 6), a<b,
and let (c,d) be the unique solution in integers of
c* +3d*> =3p, d=1(mod 6), ¢>0.

Then

b—2)/6 a* b d—1)/6 c? 2
8154432 pog (n) = (—1)@+0=2/0 ¢ (2, 2) + (—n)lerdmDo <3,d ) - (M

O

5.5 Remark
We note that

6
f(m? n?) = l_l(m2 - a?ng)

j=1
where

a1:ﬁ+17 a2:\/§717

a3 =vV6+vV3+vV2+2, as=v6—-vV3+v2-2,

a5:\/7_\/§_\/§+27 aﬁz\/é+\/7_\/§_27
and

aias = azay = asag = 1.

As a result, (7) may be written as a sum of two expressions, each of which
factors into linear factors involving a and b, and ¢ and d, respectively.
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