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1 Introduction

Dedekind’s η-function is defined by

η(z) = q
1
24

∞∏
j=1

(1− qj), where q = e2πiz, Im(z) > 0.

For certain values of d, the expansion of ηd(z) in powers of q has a particularly
simple form. For example, the cases d = 1 and d = 3 are due to L. Euler and
C. G. J. Jacobi, respectively:

η(24z) =
∞∑

j=−∞
(−1)jq(6j+1)2 ,

η3(8z) =
∞∑

j=−∞
(4j + 1)q(4j+1)2 .

For d = 8 we have

η8(12z) =
1
2

∞∑
i=−∞

(2i)2q3(2i)2
∞∑

j=−∞
(6j − 2)q(6j−2)2

+
1
2

∞∑
i=−∞

(2i+ 1)2q3(2i+1)2
∞∑

j=−∞
(6j + 1)q(6j+1)2 ,

and there are analogous formulas for d = 10 and 14 in terms of double sums.
The case d = 8 was first considered by F. Klein and R. Fricke [7, p. 373]. The
formula for d = 10 was discovered by L. Winquist [17], who used it to give an
elementary proof of S. Ramanujan’s congruence

p(11m+ 6) ≡ 0 (mod 11),

where p(n) is the number of partitions of n. F. J. Dyson [5, p. 637] reports that
the case d = 14 was discovered by A. O. L. Atkin, and furthermore that Atkin
had a formula for d = 26. Apart from a special case cited by Dyson [5, p. 651],
no details of Atkin’s work on d = 26 have been published.

Dyson found that there are elegant multiple series expansions for d = 3, 8,
10, 14, 15, 21, 24, 26, 28, 35, 36, . . .. At about the same time, I. G. Macdonald
[10] discovered there is an elegant multiple series expansion for any value of d
which is the dimension of a finite dimensional simple Lie algebra. Macdonald’s
results include all of the numbers on Dyson’s list, except d = 26. In [8] and [9],
V. E. Leininger and S. C. Milne utilized [11] and multiple basic hypergeometric
series techniques to derive new non-trivial explicit multiple series expansions for
additional infinite families of values of d not in [10], but not for d = 26. They
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also simplified Macdonald’s results corresponding to affine root systems of type
A`.

The purpose of this article is to prove a formula for η26(z) in terms of a
double series. A special case of our formula is as follows. Suppose 12n + 13 is
prime. Let a+ ib and c+ id be the unique Gaussian integers which satisfy the
conditions

a2 + b2 = 24n+ 26, a, b ≡ 1 (mod 6), a < b,

c2 + 3d2 = 36n+ 39, d ≡ 1 (mod 6), c > 0.

Then the coefficient of qn in
∏∞

j=1(1− qj)26 is

1
263411213

(
(−1)(a+b−2)/6

26
Re

(
(a+ ib)12

)
+

(−1)(c+d−1)/6

36
Re

(
(c+ id

√
3)12

))
.

This is different from the formula of Atkin quoted by Dyson. As an example,
when n = 2 we have a+ ib = −5 + 7i and c+ id = 6− 5i, so the coefficient of
q2 in

∏∞
j=1(1− qj)26 is therefore

1
263411213

(
1
64

Re
(
(−5 + 7i)12

)
+

1
729

Re
(
(6− 5i

√
3)12

))
=

1
263411213

(1025046359 + 1413128809)

= 299.

Our proof is based on the observation that η2(z) may be expressed as a
product of two theta functions in two different ways:

η2(z) =

 ∞∑
j=−∞

(−1)jq(6j+1)2/24

2

=

 ∞∑
j=−∞

(−1)jq(6j+1)2/12

  ∞∑
j=−∞

(−1)jqj2

 .

Atkin’s proof [1] uses properties of η10(z)E2
4(z) and η14(z)E6(z), where E4 and

E6 are Eisenstein series of weights 4 and 6, respectively. Atkin’s notes [1] in-
dicate that he discovered his formula for η26(z) in 1965, and in 1966 he found
another formula, different from the one quoted by Dyson [5, p. 651]. For a
published proof of a formula for η26(z), see the paper by J.-P. Serre [16].

2 Statement of results

Let m and n be real numbers and define

f(m,n) =
6∑

j=0

(
12
2j

)
(−1)jmjn6−j

= m6 − 66m5n+ 495m4n2 − 924m3n3 + 495m2n4 − 66mn5 + n6.
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Observe that
f(m2, n2) = Re

(
(m+ in)12

)
.

Ramanujan’s Eisenstein series are

P = 1− 24
∞∑

j=1

jqj

1− qj
,

Q = 1 + 240
∞∑

j=1

j3qj

1− qj
,

R = 1− 504
∞∑

j=1

j5qj

1− qj
.

We will prove the following identities:

Lemma 1

η2(z)(3999Q3 − 4000R2)

=
∞∑

i=−∞

∞∑
j=−∞

(−1)i+jf

(
(6i+ 1)2

2
,
(6j + 1)2

2

)
q[(6i+1)2+(6j+1)2]/24.

Lemma 2

η2(z)(5439Q3 − 5438R2)

=
∞∑

i=−∞

∞∑
j=−∞

(−1)i+jf
(
12i2, (6j + 1)2

)
qi2+(6j+1)2/12.

If we add these results and use the fact that [13], [15, pp. 140 – 144]

Q3 −R2 = 1728η24(z),

we obtain our main result:

Theorem 3

16308864 η26(z)

=
∞∑

i=−∞

∞∑
j=−∞

(−1)i+jf

(
(6i+ 1)2

2
,
(6j + 1)2

2

)
q[(6i+1)2+(6j+1)2]/24

+
∞∑

i=−∞

∞∑
j=−∞

(−1)i+jf
(
12i2, (6j + 1)2

)
qi2+(6j+1)2/12.
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By comparing coefficients on both sides we readily obtain:

Corollary 4
Let

ηr(z) = qr/24
∞∑

n=0

pr(n)qn,

where the coefficients pr(n) are defined by

∞∏
m=1

(1− qm)r =
∞∑

n=0

pr(n)qn.

Then

16308864 p26(n) =
∑

α2+β2=24n+26
α, β≡1 (mod 6)

(−1)(α+β−2)/6f

(
α2

2
,
β2

2

)

+
∑

γ2+3δ2=36n+39
γ≡0 (mod 6), δ≡1 (mod 6)

(−1)(γ+δ−1)/6f

(
γ2

3
, δ2

)
.

3 Proof of Lemma 1

Let

V2` =

∞∑
j=−∞

(−1)j(6j + 1)2`q(6j+1)2/24

∞∑
j=−∞

(−1)jq(6j+1)2/24

.

Using the relation

V2`+2 = PV2` + 24q
dV2`

dq

and the Ramanujan differential equations for P , Q and R, Ramanujan [14, p.
369] showed that

V0 = 1,
V2 = P,

V4 = 3P 2 − 2Q,
V6 = 15P 3 − 30PQ+ 16R,
V8 = 105P 4 − 420P 2Q+ 448PR− 132Q2,
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V10 = 945P 5 − 6300P 3Q+ 10080P 2R− 5940PQ2 + 1216QR,
V12 = 10395P 6 − 103950P 4Q+ 221760P 3R

−196020P 2Q2 + 80256PQR− 2712Q3 − 9728R2. (1)

Observe that

V0V12 − 66V2V10 + 495V4V8 − 924V 2
6 + 495V8V4 − 66V10V2 + V12V0

= 64(3999Q3 − 4000R2).

If we multiply this by η2(z)/64 we complete the proof of Lemma 1.

4 Proof of Lemma 2

The key to proving Lemma 2 is to write

η2(z) = q
1
12

∞∏
j=1

(1− qj)2

= q
1
12

∞∏
j=1

(1− q2j)
∞∏

j=1

(1− qj)2

(1− q2j)

=

 ∞∑
j=−∞

(−1)jq(6j+1)2/12

  ∞∑
j=−∞

(−1)jqj2

 . (2)

Let

ϕ(q) =
∞∑

j=−∞
qj2
, ψ(q) =

∞∑
j=0

qj(j+1)/2,

and define

z = ϕ(q)2, x = 16q
ψ(q2)4

ϕ(q)4
.

Let

V 2` =

∞∑
j=−∞

(−1)j(6j + 1)2`q(6j+1)2/12

∞∑
j=−∞

(−1)jq(6j+1)2/12

= V2`(q2),

W2` =

∞∑
j=−∞

(−1)j(12j2)`qj2

∞∑
j=−∞

(−1)jqj2

.
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We will express V 2` and W2` in terms of P , z and x.

From [3, pp. 126–127] we have

P (q2) =
1
2

(
P + z2(1 + x)

)
,

Q(q2) = z4(1− x+ x2),

R(q2) = z6(1 + x)(1− x

2
)(1− 2x).

Using these in (1) we obtain

V 0 = 1,

2V 2 = P + z2(1 + x),

4V 4 = 3P 2 + 6Pz2(1 + x)− z4(5− 14x+ 5x2),

8V 6 = 15P 3 + 45P 2z2(1 + x)− 15z4P (5− 14x+ 5x2)
+z6(1 + x)(23x2 − 170x+ 23),

16V 8 = 105P 4 + 420P 3z2(1 + x)− 210P 2z4(5− 14x+ 5x2)
+28Pz6(1 + x)(23− 170x+ 23x2)
−z8(103− 1172x+ 16458x2 − 1172x3 + 103x4),

32V 10 = 945P 5 + 4725P 4z2(1 + x)− 3150P 3z4(5− 14x+ 5x2)
+630P 2z6(1 + x)(23− 170x+ 23x2)
−45Pz8(103− 1172x+ 16458x2 − 1172x3 + 103x4)
+z10(1 + x)(257− 7852x− 346266x2 − 7852x3 + 257x4),

64V 12 = 10395P 6 + 62370P 5z2(1 + x)− 51975P 4z4(5− 14x+ 5x2)
+13860P 3z6(1 + x)(23− 170x+ 23x2)
−1485P 2z8(103− 1172x+ 16458x2 − 1172x3 + 103x4)
+66Pz10(1 + x)(257− 7852x− 346266x2 − 7852x3 + 257x4)
+z12(4387 + 12282x− 10840467x2 − 17010388x3 − 10840467x4

+12282x5 + 4387x6).

Now we will express W2` in terms of P , z and x. First, observe that W0 = 1.
Next, from [3, pp. 120–129] we have

ϕ(−q) = z
1
2 (1− x) 1

4 ,
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q
dx

dq
= z2x(1− x),

12q
dz

dq
= Pz + z3(5x− 1),

Q = z4(1 + 14x+ x2),

R = z6(1 + x)(1− 34x+ x2).

Using these we obtain

W2 = 12q
d

dq
log

√
ϕ(−q)

= 3q
d

dq
log z(1− x) 1

2

=
3
z
q
dz

dq
− 3

2(1− x)
q
dx

dq

=
1
2

(
P − z2 − z2x

)
.

If we apply q d
dq to the equation defining W2` and simplify, we obtain the differ-

ential recurrence relation

W2`+2 = W2W2` + 12q
d

dq
W2`.

Additional values of W2` can be computed using the differential recurrence re-
lation together with Ramanujan’s differential equations for P , Q and R. We
obtain:

4
3
W4 = P 2 − 2Pz2(1 + x) + z4(1− 22x+ x2),

8
3
W6 = 5P 3 − 15P 2z2(1 + x) + 15Pz4(1− 22x+ x2)

−z6(1 + x)(5 + 226x+ 5x2),

16
3
W8 = 35P 4 − 140P 3z2(1 + x) + 210P 2z4(1− 22x+ x2)

−28Pz6(1 + x)(5 + 226x+ 5x2)
+z8(35− 2596x− 6990x2 − 2596x3 + 35x4),

32
27
W10 = 35P 5 − 175P 4z2(1 + x) + 350P 3z4(1− 22x+ x2)

−70P 2z6(1 + x)(5 + 226x+ 5x2)
+5Pz8(35− 2596x− 6990x2 − 2596x3 + 35x4)

8



−z10(1 + x)(35− 196x+ 18546x2 − 196x3 + 35x4),

64
27
W12 = 385P 6 − 2310P 5z2(1 + x) + 5775P 4z4(1− 22x+ x2)

−1540P 3z6(1 + x)(5 + 226x+ 5x2)
+165P 2z8(35− 2596x− 6990x2 − 2596x3 + 35x4)
−66Pz10(1 + x)(35− 196x3 + 18546x2 − 196x3 + 35x4)
+z12(385 + 18078x− 50385x2 − 841180x3 − 50385x4 + 18078x5 + 385x6).

Observe that

V 0W12 − 66V 2W10 + 495V 4W8 − 924V 6W6 + 495V 8W4 − 66V 10W2 + V 12W0

= z12(1 + 587346x− 2348625x2 + 3526652x3 − 2348625x4 + 587346x5 + x6)
= 5439z12(1 + 14x+ x2)3 − 5438z12(1 + x)2(1− 34x+ x2)2

= 5439Q3 − 5438R2.

If we multiply this by η2(z) and use (2) we complete the proof of Lemma 2.

5 Consequences

5.1 Lacunarity

A series qν
∑∞

n=0 anq
n is called lacunary if almost all of the coefficients an are

zero, i.e., limN→∞
M(N)

N = 0, where M(N) is the number of n ≤ N with an 6= 0.
Serre [16] showed that the only even values of d for which ηd(z) is lacunary are
d = 2, 4, 6, 8, 10, 14 or 26. It is still unknown if there are any odd values of
d, besides d = 1 and 3, for which ηd(z) is lacunary.

The series representation given in Theorem 3, together with a theorem of
Landau [2, p. 244, Th. 10.5], imply that η26(z) is lacunary.

5.2 The Hecke operator

If p ≡ 11 (mod 12), then Corollary 4 together with the elementary method used
in [4] imply

p26

(
pn+

13
12

(p2 − 1)
)

= p12p26

(
n

p

)
.

This provides an elementary derivation of the case r = 26 of the following the-
orem of Newman [12]:

Theorem 5
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Suppose that r is one of the numbers 2, 4, 6, 8, 10, 14, 26. Let p be a prime
> 3 such that r(p+1) ≡ 0 (mod 24). Let ∆ = (p2− 1)/24, and define pr(x) = 0
if x is not a non-negative integer. Then

pr (pn+ r∆) = (−p)(r/2)−1pr

(
n

p

)
.

Furthermore there are no other values of r for which the theorem is true.

Elementary proofs for the cases r = 2, 4, 6, 8, 10 and 14 of Newman’s the-
orem were given in [4].

5.3 Values of n for which p26(n) = 0

The explicit formula in Corollary 4 may be used to prove two conditions given
by Serre [16, p. 213] which imply p26(n) = 0.

Proposition 6
Suppose that the factorization of 12n+ 13 into distinct primes contains at least
one prime congruent to −1 modulo 4 raised to an odd power, and also at least
one prime congruent to −1 modulo 3 raised to an odd power. Then p26(n) = 0.

Proof
Let 12n+13 =

∏
p p

λp be the factorization of 12n+13 into primes. Let r2(m) and
s(m) denote the number of solutions in integers of x2+y2 = m and x2+3y2 = m,
respectively. Two classical results [6] are, for any positive integer m,

r2(m) = 4 (d1,4(m)− d3,4(m)) , (3)
s(m) = 2(d1,3(m)− d2,3(m)) + 4(d4,12(m)− d8,12(m)), (4)

where dj,k(m) denotes the number of divisors of m which are congruent to j
modulo k. It follows that

r2(24n+ 26) = 4
∏

p≡1 (mod 4)

(λp + 1)
∏

p≡−1 (mod 4)

1 + (−1)λp

2
, (5)

s(36n+ 39) = 2
∏

p≡1 (mod 3)

(λp + 1)
∏

p≡−1 (mod 3)

1 + (−1)λp

2
. (6)

Consequently, r2(24n+26) = s(36n+39) = 0. Therefore the sums in Corollary
4 are empty and it follows that p26(n) = 0.

Proposition 7
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Suppose 12n+13 is a square and all the prime factors of 12n+13 are congruent
to −1 modulo 12. Then p26(n) = 0.

Proof
Write 12n + 13 = x2 =

∏
p p

λp , where the product is over primes p ≡ −1
(mod 12), and all the exponents λp are even. Without loss of generality we can
assume x ≡ 1 (mod 12). Then (5) implies r2(26n+24) = 4, and in fact the repre-
sentations are 24n+26 = (±x)2 +(±x)2. Similarly, (6) implies s(36n+39) = 2,
and the representations are 36n+ 39 = (0)2 + 3(±x)2. Corollary 4 implies

16308864 p26(n) = f

(
x2

2
,
x2

2

)
+ f(0, x2) = x12 − x12 = 0.

5.4 The case when 12n + 13 is prime

For this section, let us consider the case when 12n+ 13 is prime, in which case
we write p = 12n+ 13. Corollary 4 implies

16308864 p26(n) =
∑

α2+β2=2p
α, β≡1 (mod 6)

(−1)(α+β−2)/6f

(
α2

2
,
β2

2

)

+
∑

γ2+3δ2=3p
γ≡0 (mod 6), δ≡1 (mod 6)

(−1)(γ+δ−1)/6f

(
γ2

3
, δ2

)
,

Equation (3) implies that α2 + β2 = 2p has exactly eight solutions in integers,
say (α, β) = (±a,±b), (±b,±a), where a, b ≡ 1 (mod 6) and a < b. Two of these
eight solutions satisfy the conditions α, β ≡ 1 (mod 6), namely (α, β) = (a, b)
and (α, β) = (b, a). Therefore∑

α2+β2=2p
α,β≡1 (mod 6)

(−1)(α+β−2)/6f

(
α2

2
,
β2

2

)
= 2(−1)(a+b−2)/6f

(
a2

2
,
b2

2

)
.

Similarly, equation (4) implies that γ2 + 3δ2 = 3p has exactly four solutions in
integers, say (γ, δ) = (±c,±d), where c > 0 and d ≡ 1 (mod 6). Two of these
four solutions satisfy γ ≡ 0 (mod 6), δ ≡ 1 (mod 6), namely (γ, δ) = (c, d) and
(γ, δ) = (−c, d). Therefore∑

γ2+3δ2=3p
γ≡0 (mod 6), δ≡1 (mod 6)

(−1)(γ+δ−1)/6f

(
γ2

3
, δ2

)
= 2(−1)(c+d−1)/6f

(
c2

3
, d2

)
.

Therefore we have proved a result which is equivalent to the formula mentioned
in the introduction:
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Theorem 8
Let p = 12n+ 13 be prime. Let (a, b) be the unique solution in integers of

a2 + b2 = 2p, a, b ≡ 1 (mod 6), a < b,

and let (c, d) be the unique solution in integers of

c2 + 3d2 = 3p, d ≡ 1 (mod 6), c > 0.

Then

8154432 p26(n) = (−1)(a+b−2)/6f

(
a2

2
,
b2

2

)
+ (−1)(c+d−1)/6f

(
c2

3
, d2

)
. (7)

5.5 Remark

We note that

f(m2, n2) =
6∏

j=1

(m2 − a2
jn

2)

where
a1 =

√
2 + 1, a2 =

√
2− 1,

a3 =
√

6 +
√

3 +
√

2 + 2, a4 =
√

6−
√

3 +
√

2− 2,
a5 =

√
6−

√
3−

√
2 + 2, a6 =

√
6 +

√
3−

√
2− 2,

and
a1a2 = a3a4 = a5a6 = 1.

As a result, (7) may be written as a sum of two expressions, each of which
factors into linear factors involving a and b, and c and d, respectively.
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