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Abstract. In this article, we use the theory of elliptic functions to
construct theta function identities which are equivalent to Macdonald’s
identities for A2,B2 and G2. Using these identities, we express, for
d = 8, 10 or 14, certain theta functions in the form ηd(τ)F (P, Q, R),
where η(τ) is Dedekind’s eta-funcion, and F (P, Q, R) is a polynomial in
Ramanujan’s Eisenstein series P, Q, and R. We also derive identities in
the case when d = 2. These lead to a new expression for η26(τ). This
work generalizes the results for d = 1 and d = 3 which were given by
Ramanujan on page 369 of the “Lost Notebook”.

1. Introduction

Let Im(τ) > 0 and put q = exp(2πiτ). Dedekind’s eta-function is defined
by

η(τ) = q
1
24

∞∏
k=1

(1− qk),

and Ramanujan’s Eisenstein series are

P = P (q) = 1− 24
∞∑

k=1

kqk

1− qk
,

Q = Q(q) = 1 + 240
∞∑

k=1

k3qk

1− qk

and

R = R(q) = 1− 504
∞∑

k=1

k5qk

1− qk
.

On page 369 of The Lost Notebook [28], S. Ramanujan gave the following
results:
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Theorem 1.1 (Ramanujan). Let

S1(m) =
∑

α≡1 (mod 6)

(−1)(α−1)/6αmqα2/24,

S3(m) =
∑

α≡1 (mod 4)

αmqα2/8.

Then

S1(0) = η(τ),
S1(2) = η(τ)P,

S1(4) = η(τ)(3P 2 − 2Q),
S1(6) = η(τ)(15P 3 − 30PQ + 16R),

and in general

S1(2m) = η(τ)
∑

i+2j+3k=m

aijkP
iQjRk,

where aijk are integers, and i, j and k are non-negative integers. Also,

S3(1) = η3(τ),
S3(3) = η3(τ)P,

S3(5) = η3(τ)(5P 2 − 2Q)/3,

S3(7) = η3(τ)(35P 3 − 42PQ + 16R)/9,

and in general

S3(2m + 1) = η3(τ)
∑

i+2j+3k=m

bijkP
iQjRk,

where bijk are rational numbers, and i, j and k are non-negative integers.

The results for S1(0) and S3(1) are well-known consequences of the Jacobi
triple product identity [1, p. 500]. Ramanujan also listed the values of S1(8),
S1(10), S3(9) and S3(11). He indicated that these results may be proved
by induction, using differentiation and the Ramanujan differential equations
[26, eq. 30]

q
dP

dq
=

P 2 −Q

12
, q

dQ

dq
=

PQ−R

3
, q

dR

dq
=

PR−Q2

2
.

Theorem 1.1 has been studied by K. Venkatachaliengar [36, pp. 31–32]
(where both S1 and S3 are studied), B. C. Berndt and A. J. Yee [6] (where
S1 is studied), and B. C. Berndt, S. H. Chan, Z.-G. Liu and H. Yesilyurt
[5] (where S3 is studied). For a different approach to these identities, see
Ramanujan [27, Chapter 16, Entry 35 (i)] (for S3), Berndt [4, p. 61] (for
S3) and Liu [22] (for S1).

The first purpose of this article is to prove analogous results corresponding
to the 2nd, 4th, 6th, 8th, 10th, 14th and 26th powers of η(τ), these being
the even powers of η(τ) that are lacunary [33, Theorem 1]. For example,
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the result for the 14th power is as follows. For non-negative integers m, n,
`, let

S14(m,n, `) =
∑

α≡2 (mod 6)
β≡1 (mod 4)

(−1)(α−2)/6
(
β(α2 − β2)

)m (
α(α2 − 9β2)

)n
×
(
α2 + 3β2

)`
q(α2+3β2)/12.

Then

S14(2m + 1, 2n + 1, `) = η14(τ)
∑

i+2j+3k=3m+3n+`

cijkP
iQjRk, m, n, ` ≥ 0,

(1.1)

where cijk are rational numbers, and i, j and k are non-negative integers.
The first few instances of (1.1) are:

S14(1, 1, 0) = −30η14(τ),
S14(1, 1, 1) = −210η14(τ)P,

S14(1, 1, 2) = −210η14(τ)(8P 2 −Q),
S14(3, 1, 0) = −5η14(τ)(56P 3 − 21PQ + 19R),
S14(1, 3, 0) = −15η14(τ)(504P 3 − 189PQ− 115R).

An equation equivalent to the one for S14(1, 1, 0) was stated without proof
by L. Winquist [38]. Since

β(α2 − β2)α(α2 − 9β2) = α5β − 10α3β3 + 9αβ5 =
1

6
√

3
Im
(
(α + iβ

√
3)6
)

,

the result for S14(1, 1, 0) may be written as∑
α≡2 (mod 6)
β≡1 (mod 4)

(−1)(α−2)/6 Im
(
(α + iβ

√
3)6
)

q(α2+3β2)/12 = −180
√

3η14(τ).

The second purpose of this article is to prove results of the type∑
α≡2 (mod 6)
β≡1 (mod 4)

(−1)(α−2)/6 Im
(
(α + iβ

√
3)6n

)
q(α2+3β2)/12(1.2)

=
√

3η14(τ)
∑

2j+3k=3(n−1)

djkQ
jRk,

where djk are rational numbers, and j and k are non-negative integers. We
shall state analogues of this result for the 2nd, 4th, 6th, 8th, 10th and 26th
powers of η(τ), and give a detailed proof for the 10th power.

This work is organized as follows.
Notation and properties of theta functions are established in Section 2.
Sections 3, 4 and 5 are devoted to the 8th, 10th and 14th powers of η(τ),

respectively. Each section begins with a multivariate theta function identity



4 HENG HUAT CHAN, SHAUN COOPER AND PEE CHOON TOH

which is then used to prove the analogue of (1.1) for the 8th, 10th or 14th
power of η(τ).

Section 6 is concerned with the analogues of (1.1) for 2nd, 4th and 6th
powers of η(τ). These follow from Ramanujan’s Theorem 1.1.

In Section 7 we prove results analogous to (1.2) for the 2nd, 4th, 6th, 8th,
10th and 14th powers of η(τ). Since Ramanujan’s Eisenstein series P does
not occur in these results, the modular transformation for multiple theta
series given by B. Schoeneberg [32] can be used to prove them.

In Section 8 we give a simple proof of a series expansion for η26(τ), as
well as analogues of (1.1) and (1.2) for the 26th power of η(τ) which are
new. The proofs rely on two different analogues of (1.2) for η2(τ).

Finally, in Section 9 we make some remarks about lacunary series and the
Hecke operator, and a new formula for η24(τ) is presented.

2. Preliminaries

In the classical theory of theta functions [37], the notation q = exp(πiτ)
is used, whereas in the theory of modular forms q = exp(2πiτ). Because we
will use both theories, we let t = 2τ , and define

q = exp(πit) = exp(2πiτ).

We will use t when working with theta functions, and τ for modular forms
and Dedekind’s η function.

The Jacobi theta functions [1, p. 509], [37, Ch. 21] are defined by

θ1(z|t) = 2
∞∑

k=0

(−1)kq(k+ 1
2
)2 sin(2k + 1)z,

θ2(z|t) = 2
∞∑

k=0

q(k+ 1
2
)2 cos(2k + 1)z,

θ3(z|t) = 1 + 2
∞∑

k=1

qk2
cos 2kz

and

θ4(z|t) = 1 + 2
∞∑

k=1

(−1)kqk2
cos 2kz.
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Let

G2(z|t) = 2
∑

α≡1 (mod 6)

qα2/12 sin(αz),

G3(z|t) = 2
∑

α≡4 (mod 6)

qα2/12 sin(αz),

H(z|t) = G2(4z|4t)−G3(4z|4t)

= 2
∑

α≡2 (mod 6)

(−1)(α−2)/6qα2/12 sin(2αz)

and

T (z|t) = θ1(2z|t).

These functions satisfy the transformation properties

θ1(z + π|t) = −θ1(z|t), θ1(z + πt|t) = −q−1e−2izθ1(z|t),
θ2(z + π|t) = −θ2(z|t), θ2(z + πt|t) = q−1e−2izθ2(z|t),
θ3(z + π|t) = θ3(z|t), θ3(z + πt|t) = q−1e−2izθ3(z|t),
θ4(z + π|t) = θ4(z|t), θ4(z + πt|t) = −q−1e−2izθ4(z|t),
G2(z + π|t) = −G2(z|t), G2(z + πt|t) = q−3e−6izG2(z|t),
G3(z + π|t) = G3(z|t), G3(z + πt|t) = q−3e−6izG3(z|t),

H

(
z +

π

2

∣∣∣∣t) = H(z|t), H

(
z +

πt

2

∣∣∣∣t) = −q−3e−12izH(z|t),

T

(
z +

π

2

∣∣∣∣t) = −T (z|t), T

(
z +

πt

2

∣∣∣∣t) = −q−1e−4izT (z|t).

By the Jacobi triple product identity [1, p. 497],

θ1(z|t) = 2q1/4 sin z
∞∏

k=1

(1− q2ke2iz)(1− q2ke−2iz)(1− q2k).

Therefore θ1(z|t) has simple zeroes at z = πm+πtn, m, n ∈ Z, and no other
zeroes.

We will also need the results

θ2(z|t)G2(z|t) = η(2τ)θ1(2z|t),(2.1)

θ3(z|t)G3(z|t) = −η(2τ)θ1(2z|t).(2.2)

These are equivalent to the quintuple product identity. For example, see
[34, Prop. 2.1], where these and two other similar equations are given.
Equations (2.1) and (2.2), together with the Jacobi triple product identity,
imply G2(z|t) has simple zeroes when z = πm/2+πtn/2, where m and n are
integers and (m,n) 6≡ (1, 0)(mod 2), and no other zeroes. Similarly, G3(z|t)
has simple zeroes when z = πm/2 + πtn/2, where m and n are integers and
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(m,n) 6≡ (1, 1)(mod 2), and no other zeroes. Equations (2.1) and (2.2) also
imply

θ2(z|t)G2(z|t) + θ3(z|t)G3(z|t) = 0.

The following lemma is of fundamental importance and will be used sev-
eral times in the proofs in the subsequent sections. Let f (`)(z|t) denote the
`-th derivative of f(z|t) with respect to z.

Lemma 2.1.

θ
(2`1+1)
1

(
0
∣∣∣∣ t2
)

θ
(2`2+1)
1

(
0
∣∣∣∣ t2
)
· · · θ(2`m+1)

1

(
0
∣∣∣∣ t2
)

= (η(τ))3m
∑

i+2j+3k=`1+`2+···+`m

aijkP
iQjRk,

for some rational numbers aijk, where i, j and k are non-negative integers.

Proof. Let us first consider the case m = 1. From the definition of θ1, we
have

θ
(2`+1)
1 (z|t) = 2(−1)`

∞∑
k=0

(−1)k(2k + 1)2`+1q(k+ 1
2
)2 cos(2k + 1)z.

Therefore

θ
(2`+1)
1

(
0
∣∣∣∣ t2
)

= 2(−1)`
∞∑

k=0

(−1)k(2k + 1)2`+1q(k+ 1
2
)2/2

= 2(−1)`
∞∑

k=−∞
(4k + 1)2`+1q(4k+1)2/8

= 2(−1)`S3(2` + 1)

= η3(τ)
∑

i+2j+3k=`

aijkP
iQjRk,

by Theorem 1.1. The general case m ≥ 1 now follows by multiplying m
copies of this result together. �

Finally we define the standard notation for products:

(x; q)∞ =
∞∏

k=0

(1− xqk)

and

(x1, x2, · · · , xm; q)∞ = (x1; q)∞(x2; q)∞ · · · (xm; q)∞.
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3. The eighth power of η(τ)

The main tool used in this section is

Theorem 3.1.

G2(x|t)θ2(y|t) + G3(x|t)θ3(y|t) =
1

η(τ)
θ1

(
x

∣∣∣∣ t2
)

θ1

(
x + y

2

∣∣∣∣ t2
)

θ1

(
x− y

2

∣∣∣∣ t2
)

.

Proof. Let

M8(x, y|t) = G2(x|t)θ2(y|t) + G3(x|t)θ3(y|t)

and

N8(x, y|t) = θ1

(
x

∣∣∣∣ t2
)

θ1

(
x + y

2

∣∣∣∣ t2
)

θ1

(
x− y

2

∣∣∣∣ t2
)

.

Then the formulas listed in Section 2 imply M8 and N8 satisfy the transfor-
mation properties

f(x + 2π, y|t) = f(x, y|t), f(x + πt, y|t) = q−3e−6ixf(x, y|t),
f(x, y + 2π|t) = f(x, y|t), f(x, y + πt|t) = q−1e−2iyf(x, y|t).

Fix y and consider M8 and N8 as functions of x. N8 has simple zeroes
at x = πm + πtn/2, ±y + 2πm + πtn, m, n ∈ Z, and no other zeroes. By
the results in Section 2, we see that M8 also has zeroes at these points, and
possibly at other points, too. Therefore M8(x, y|t)/N8(x, y|t) is an elliptic
function of x with no poles, and thus is a constant independent of x.

Now fix x and consider M8 and N8 as functions of y. N8 has simple
zeroes at y = ±x + 2πm + πtn and no other zeroes. It is easy to check
that M8 also has zeroes at these points, and possibly at other points, too.
Therefore M8/N8 is an elliptic function of y with no poles and thus is a
constant independent of y.

It follows that
M8(x, y|t)
N8(x, y|t)

= C(q)

for some C(q) independent of x and y. To calculate C(q), let x = π/2 and
y = π. Since G3(π/2|t) = 0, we have

M8

(
π

2
, π

∣∣∣∣t) = G2

(
π

2

∣∣∣∣t)θ2(π|t)

= −2
∞∑

k=−∞
(−1)kq(6k+1)2/12

∞∑
j=−∞

q(j+ 1
2
)2

= −4η(2τ) q
1
4 (−q2,−q2, q2; q2)∞

= −4η2(4τ).



8 HENG HUAT CHAN, SHAUN COOPER AND PEE CHOON TOH

On the other hand,

N8

(
π

2
, π

∣∣∣∣t) = θ1

(
− π

4

∣∣∣∣ t2
)

θ1

(
π

2

∣∣∣∣ t2
)

θ1

(
3π

4

∣∣∣∣ t2
)

= −
(

2q
1
8

)3

sin π
4 sin π

2 sin 3π
4 (iq,−iq, q; q)2∞(−q,−q, q; q)∞

= −4η(τ)η2(4τ),

after simplifying. Therefore

C(q) =
M8(π

2 , π|t)
N8(π

2 , π|t)
=

1
η(τ)

.

This completes the proof of Theorem 3.1. �

Theorem 3.2. Let m and n be non-negative integers and define

S8(m,n) =
∑

α≡1 (mod 3)
α+β≡0 (mod 2)

αmβnq(α2+3β2)/12.

Then S8(1, 0) = 0 and

(3.1) S8(2m + 1, 2n) = η8(τ)
∑

i+2j+3k=m+n−1

aijkP
iQjRk,

provided m + n ≥ 1. Here aijk are rational numbers, and i, j and k are
non-negative integers.

Proof. Apply
∂2m+2n+1

∂x2m+1∂y2n
to the identity in Theorem 3.1 and let x = y = 0.

The left hand side is

G
(2m+1)
2 (0|t) θ

(2n)
2 (0|τ) + G

(2m+1)
3 (0|t) θ

(2n)
3 (0|τ)(3.2)

= 2(−1)m+n
∑

α≡1 (mod 6)

α2m+1qα2/12
∑

β≡1 (mod 2)

β2nqβ2/4

+ 2(−1)m+n
∑

α≡4 (mod 6)

α2m+1qα2/12
∑

β≡0 (mod 2)

β2nqβ2/4

= 2(−1)m+n
∑

α≡1 (mod 3)
α+β≡0 (mod 2)

α2m+1β2nq(α2+3β2)/12.

Since θ1(z|t) is an odd function, the right hand side is a linear combination
of terms of the form

1
η(τ)

θ
(2`1+1)
1

(
0
∣∣∣∣ t2
)

θ
(2`2+1)
1

(
0
∣∣∣∣ t2
)

θ
(2`3+1)
1

(
0
∣∣∣∣ t2
)

where (2`1 + 1) + (2`2 + 1) + (2`3 + 1) = 2m + 2n + 1. By Lemma 2.1, the
right hand side is therefore of the form

(3.3) η8(τ)
∑

i+2j+3k=m+n−1

aijkP
iQjRk.
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If we combine (3.2) and (3.3), we complete the proof of the Theorem for the
case m + n ≥ 1. The result for S8(1, 0) is obtained similarly. �

The following identities are consequences of Theorem 3.2.

S8(1, 0) = 0,

S8(3, 0) = −6η8(τ),
S8(5, 0) = −30η8(τ)P,

S8(7, 0) = −63
2

η8(τ)(5P 2 −Q),

S8(7, 2) = 2η8(τ)R,

S8(5, 4) = η8(τ)(5P 3 − 3PQ).

We also have

S8(3, 0) : S8(1, 2) = −3 : 1,

S8(5, 0) : S8(3, 2) : S8(1, 4) = −15 : 1 : 1,

S8(7, 0) : S8(5, 2) : S8(3, 4) : S8(1, 6) = −63 : 1 : 1 : 1, S8(9, 0)
S8(3, 6)
S8(1, 8)

 =

 −66 −189
1/3 2/3
2/9 7/9

( S8(7, 2)
S8(5, 4)

)
.

As mentioned in the introduction, an identity equivalent to S8(1, 2) = 2η8(τ)
was stated without proof by Winquist [38]. The formula for η8(τ) given by F.
Klein and R. Fricke [19, p. 373] can be shown to be equivalent to S8(3, 0) +
27S8(1, 2) = 48η8(τ). Schoeneberg [31, eq. (11)] gave the attractive form

η8(τ) =
1
6

∑
µ∈Z[exp(2πi/3)]

χ(µ)µ3 exp(2πiτ |µ|2/3),

where

χ(µ) =
{

1 if µ ≡ 1 (mod
√
−3),

−1 if µ ≡ −1 (mod
√
−3).

(The sum over the terms satisfying µ ≡ 0(mod
√
−3) is zero.) Schoeneberg’s

formula can be deduced from the formulas for S8(3, 0) and S8(1, 2).
Theorem 3.1 is equivalent to Macdonald’s identity for A2 (see [10], [11,

Theorem 2.1], [23] or [35, p. 146]) in the form

(u, qu−1, v, qv−1, uv, qu−1v−1, q, q; q)∞

=
∞∑

m=−∞

∞∑
n=−∞

q3m2−3mn+3n2+m+nhm,n(u, v),
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where u = ei(x+y), v = ei(x−y), and

hm,n(u, v) = uv

{
(u−3m−1v−3n−1 − u3m+1v3n+1)

+ (u3n−3mv3n+1 − u3m−3nv−3n−1)

+ (u3n+1v3n−3m − u−3n−1v3m−3n)
}

.

4. The tenth Power of η(τ)

The main tool used in this section is

Theorem 4.1.

G3(x|t)G2(y|t)−G2(x|t)G3(y|t)

=
1

η2(τ)
θ1

(
x

∣∣∣∣ t2
)

θ1

(
y

∣∣∣∣ t2
)

θ1

(
x + y

2

∣∣∣∣ t2
)

θ1

(
x− y

2

∣∣∣∣ t2
)

.

Proof. Apply the technique used in the proof of Theorem 3.1. Let

M10(x, y|t) := G3(x|t)G2(y|t)−G2(x|t)G3(y|t)

and

N10(x, y|t) := θ1

(
x

∣∣∣∣ t2
)

θ1

(
y

∣∣∣∣ t2
)

θ1

(
x + y

2

∣∣∣∣ t2
)

θ1

(
x− y

2

∣∣∣∣ t2
)

.

Then M10 and N10 satisfy the transformation formulas:

f(x + 2π, y|t) = f(x, y|t), f(x + πt, y|t) = q−3e−6ixf(x, y|t),
f(x, y + 2π|t) = f(x, y|t), f(x, y + πt|t) = q−3e−6iyf(x, y|t).

Let y be fixed. Then N10 has simple zeroes at x = πm+πtn/2, ±y+2πm+
πtn, m, n ∈ Z, and no other zeroes. The results in Section 2 imply M10

also has zeroes at the same points as N10, and possibly at other points, too.
Thus M10(x, y|t)/N10(x, y|t) is an elliptic function of x with no poles, and
therefore is a constant which is independent of x.

By the symmetry in x and y, we find that M10(x, y|t)/N10(x, y|t) is also
independent of y, and therefore depends only on q. Let us denote the con-
stant by D(q). To determine its value, let x = π/2 and y = π/6. Since
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G3(π/2|t) = 0 we have

M10

(
π

2
,
π

6

∣∣∣∣t)
= −G2

(
π

2

∣∣∣∣t)G3

(
π

6

∣∣∣∣t)
= −4

∞∑
j=−∞

q(6j+1)2/12 sin(3j + 1
2)π

∞∑
k=−∞

q(6k−2)2/12 sin(k − 1
3)π

= 2
√

3

q
1
12

∞∑
j=−∞

(−1)jq3j2+j

(q
1
3

∞∑
k=−∞

(−1)kq3k2−2k

)

= 2
√

3 η(2τ)q
1
3 (q, q5, q6; q6)∞

= 2
√

3
η(τ)η2(6τ)

η(3τ)
.

On the other hand, writing γ = exp(iπ/3) we have

N10

(
π

2
,
π

6

∣∣∣∣t)
= θ1

(
π

6

∣∣∣∣ t2
)2

θ1

(
π

3

∣∣∣∣ t2
)

θ1

(
π

2

∣∣∣∣ t2
)

=
(
2q

1
8

)4
sin2 π

6 sin π
3 sin π

2 (γq, γ5q, q; q)2∞(γ2q, γ4q, q; q)∞(γ3q, γ3q, q; q)∞

= 2
√

3
η3(τ)η2(6τ)

η(3τ)
,

after simplifying the infinite products. So

D(q) =
M10(π

3 , π
6 |t)

N10(π
3 , π

6 |t)
=

1
η2(τ)

.

�

Theorem 4.2. Let

S10(m,n) =
∑

α≡1 (mod 6)
β≡4 (mod 6)

(αmβn − αnβm)q(α2+β2)/12.

Then

(4.1) S10(2m + 1, 2n + 1) = η10(τ)
∑

i+2j+3k=m+n−1

aijkP
iQjRk,

where aijk are rational numbers, and i, j and k are non-negative integers.

Proof. Apply
∂2m+2n+2

∂x2m+1∂y2n+1
to both sides of Theorem 4.1, then let x = y =

0. We omit the details as they are similar to those in the proof of Theorem
3.2. �
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The first few examples of Theorem 4.2 are:

S10(3, 1) = 6η10(τ),

S10(5, 1) = 30η10(τ)P,

S10(7, 1) =
63
2

η10(τ)(5P 2 −Q),

S10(5, 3) =
3
2
η10(τ)(15P 2 + Q),

S10(9, 1) = 3η10(τ)(315P 3 − 189PQ + 44R),

S10(7, 3) =
3
2
η10(τ)(105P 3 − 21PQ− 4R).

Theorem 4.1 is equivalent to Winquist’s identity [38, Theorem 1.1]: put
a = ei(x+y), b = ei(x−y) in Theorem 4.1 to get [38, Theorem 1.1]. Observe
that the left hand side of Theorem 4.1 is a difference of two terms, and each
term is a product of two series that can be summed by the quintuple product
identity. This was first noticed by S.-Y. Kang [18]. More information on
Winquist’s identity can be found in [5], [7], [9], [14], [17], [20] and [21].

5. The fourteenth Power of η(τ)

The main tool used in this section is

Theorem 5.1.

H(x|t)T (y|t) + H

(
x− y

2

∣∣∣∣t)T

(
3x + y

2

∣∣∣∣t)+ H

(
x + y

2

∣∣∣∣t)T

(
−3x + y

2

∣∣∣∣t)
=

1
η4(τ)

θ1

(
x

∣∣∣∣ t2
)

θ1

(
y

∣∣∣∣ t2
)

θ1

(
x + y

2

∣∣∣∣ t2
)

θ1

(
x− y

2

∣∣∣∣ t2
)

θ1

(
3x + y

2

∣∣∣∣ t2
)

θ1

(
−3x + y

2

∣∣∣∣ t2
)

.

Proof. Apply the elliptic function method used in the previous two sections.
By the results in Section 2, it may be checked that both sides satisfy the
transformation formulas

f(x + 2π, y|t) = f(x, y|t), f(x + πt, y|t) = q−12e−24ixf(x, y|t),
f(x, y + 2π|t) = f(x, y|t), f(x, y + πt|t) = q−4e−8iyf(x, y|t).

It is straightforward to check that for a fixed value of x or y, the left hand
side is zero whenever the right hand side is zero. Finally, the constant may
be evaluated by letting x = −π/8, y = 7π/8. �

Because the left hand side of Theorem 5.1 is more complicated than the
left hand sides of Theorems 3.1 and 4.1, some extra analysis is needed before
differentiating. We will need:
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Lemma 5.2. Let Dx = ∂
∂x and Dy = ∂

∂y . Let f(z) and g(z) be analytic
functions. Let(

a b
c d

)
∈


(

1 0
0 1

)
,

 1
2 −1

2

3
2

1
2

 ,

 1
2

1
2

−3
2

1
2

 .

Then

DxDy(D2
x −D2

y)(D
2
x − 9D2

y) (f(ax + by)g(cx + dy))(5.1)

= f (5)(ax + by)g′(cx + dy)− 10f ′′′(ax + by)g′′′(cx + dy)

+9f ′(ax + by)g(5)(cx + dy).

More generally, for non-negative integers m, n and `, define an operator
Dx,y(m,n, `) and coefficients ci,j(m,n, `) by

Dx,y(m,n, `) =
(
Dy(D2

x −D2
y)
)m (

Dx(D2
x − 9D2

y)
)n (

D2
x + 3D2

y

)`
=

∑
i+j=3m+3n+2`

ci,j(m,n, `)Di
xDj

y.

Then

(5.2)
Dx,y(2m + 1, 2n + 1, `) (f(ax + by)g(cx + dy))

=
∑

i+j=6(m+n+1)+2`

ci,j(2m + 1, 2n + 1, `)
(
f (i)(ax + by)g(j)(cx + dy)

)
.

Proof. The result is trivial if
(

a b
c d

)
=
(

1 0
0 1

)
. In either of the other

cases, calculations using the chain rule imply that

Dy(D2
x −D2

y) (f(ax + by)g(cx + dy))(5.3)

= −f ′′(ax + by)g′(cx + dy) + f(ax + by)g′′′(cx + dy),
Dx(D2

x − 9D2
y) (f(ax + by)g(cx + dy))(5.4)

= −f ′′′(ax + by)g(cx + dy) + 9f ′(ax + by)g′′(cx + dy),
(D2

x + 3D2
y) (f(ax + by)g(cx + dy))(5.5)

= f ′′(ax + by)g(cx + dy) + 3f(ax + by)g′′(cx + dy).

If we combine (5.3) and (5.4), we obtain (5.1), which is the case m = n =
` = 0 of (5.2). The general result (5.2) now follows by induction on m, n
and `, using (5.3)–(5.5). �

Theorem 5.3. Let

S14(m,n, `) =∑
α≡2 (mod 6)
β≡1 (mod 4)

(−1)(α−2)/6
(
β(α2 − β2)

)m (
α(α2 − 9β2)

)n (
α2 + 3β2

)`
q(α2+3β2)/12.
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Then

(5.6) S14(2m + 1, 2n + 1, `) = η14(τ)
∑

i+2j+3k=3m+3n+`

aijkP
iQjRk,

where aijk are rational numbers, and i, j and k are non-negative integers.

Proof. Apply the operator Dx,y(2m+1, 2n+1, `) to the identity in Theorem
5.1, then let x = y = 0. For the left hand side, use Lemma 5.2 and for the
right hand side use Lemma 2.1. �

Since
(α2 + 3β2)3 = 27β2(α2 − β2)2 + α2(α2 − 9β2)2,

it follows that

S14(2m+1, 2n+1, `+3) = 27S14(2m+3, 2n+1, `)+S14(2m+1, 2n+3, `).

Therefore without loss of generality we may assume 0 ≤ ` ≤ 2.
The first few examples of Theorem 5.3 were given in Section 1. Theorem

5.1 is equivalent to Macdonald’s identity for G2 (see [11, (1.8)]) written in
the form

(u, qu−1, uv,qu−1v−1, u2v, qu−2v−1, u3v, qu−3v−1, v, qv−1, u3v2, qu−3v−2, q, q; q)∞

=
∑
m

∑
n

q12m2−12mn+4n2−m−nHm,n(u, v),

where u = e2ix, v = ei(y−3x) and

Hm,n(u, v) = u5v3

{
(u12m−5v4n−3 + u−12m+5v−4n+3)

− (u12n−12m−4v4n−3 + u12m−12n+4v−4n+3)

+ (u12n−12m−4v8n−12m−1 + u12m−12n+4v12m−8n+1)

− (u12n−24m+1v8n−12m−1 + u24m−12n−1v12m−8n+1)

+ (u12n−24m+1v4n−12m+2 + u24m−12n−1v12m−4n−2)

− (u−12m+5v4n−12m+2 + u12m−5y12m−4n−2)
}

.

6. Second, fourth and sixth powers of η(τ)

Analogous results for η2(τ), η4(τ) and η6(τ) can be obtained trivially by
multiplying Ramanujan’s results for S1 and S3. Specifically, let

S2(m,n) = S1(m)S1(n),

S4(m,n) = S1(m)S3(n),

S6(m,n) = S3(m)S3(n).
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Then

S2(2m, 2n) = η2(τ)
∑

i+2j+3k=m+n

aijkP
iQjRk,(6.1)

S4(2m, 2n + 1) = η4(τ)
∑

i+2j+3k=m+n

aijkP
iQjRk,(6.2)

S6(2m + 1, 2n + 1) = η6(τ)
∑

i+2j+3k=m+n

aijkP
iQjRk.(6.3)

In each case, aijk are rational numbers, and i, j and k are non-negative
integers.

Another form for η6(τ) was given by Schoeneberg [31, eq. (8)]:

η6(τ) =
1
2

∞∑
a=−∞

∞∑
b=−∞

Re(a + 2ib)2q(a2+4b2)/4.

This formula can be shown to be equivalent to the identity for S6(1, 1) by
direct series manipulations.

Results of a different type for η6(τ) may be obtained using a series given
by M. Hirschhorn [16]. Let

S∗6(m, n) =
∑

α≡1 (mod 10)
β≡3 (mod 10)

(−1)(α+β−4)/10(αmβn − αnβm)q(α2+β2)/40.

Hirschhorn’s result is
S∗6(0, 2) = 8η6(τ).

Using the techniques in this paper it can be shown that if m + n ≥ 1, then

S∗6(2m, 2n) = η6(τ)
∑

i+2j+3k=m+n−1

aijkP
iQjRk,

where aijk are rational numbers, and i, j and k are non-negative integers.

7. Identities obtained using Schoeneberg’s theta functions

In this section we prove (1.2) and analogous results for 2nd, 4th, 6th, 8th
and 10th powers of η(τ). Most of the results in this section are new. A few
special cases can be found in Ramanujan’s Lost Notebook, for example [28,
p. 249]. Some of Ramanujan’s identities have recently been examined by S.
S. Rangachari [29], [30], using Hecke’s theta functions [15].

The results we shall prove are as follows.

Theorem 7.1. Let

C2(n|τ) =
∑

α≡1 (mod 6)
β≡1 (mod 6)

(−1)(α+β−2)/6(α + iβ)nq(α2+β2)/24.

Then C2(4n|τ)/η2(τ) is a modular form of weight 4n on SL2(Z).
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Theorem 7.2. Let

C∗
2 (n|τ) =

∑
α≡0 (mod 6)
β≡1 (mod 6)

(−1)(α+β−1)/6(α + iβ
√

3)nq(α2+3β2)/36.

Then C∗
2 (6n|τ)/η2(τ) is a modular form of weight 6n on SL2(Z).

Theorem 7.3. Let

C4(n|τ) =
∑

α≡1 (mod 6)
β≡1 (mod 4)

(−1)(α−1)/6Im
(
(α + iβ

√
3)n
)

q(α2+3β2)/24.

Then C4(2n + 1|τ)/η4(τ) is a modular form of weight 2n on SL2(Z).

Theorem 7.4. Let

C6(n|τ) =
∑

α≡1 (mod 4)
β≡1 (mod 4)

(α + iβ)nq(α2+β2)/8.

Then C6(4n + 2|τ)/η6(τ) is a modular form of weight 4n on SL2(Z).

Theorem 7.5. Let

C8(n|τ) =
∑

α≡1 (mod 3)
α+β≡0 (mod 2)

(α + iβ
√

3)nq(α2+3β2)/12.

Then C8(6n + 3|τ)/η8(τ) is a modular form of weight 6n on SL2(Z).

Theorem 7.6. Let

C10(n|τ) =
∑

α≡1 (mod 6)
β≡4 (mod 6)

Im ((α + iβ)n) q(α2+β2)/12.

Then C10(4n + 4|τ)/η10(τ) is a modular form of weight 4n on SL2(Z).

Theorem 7.7. Let

C14(n|τ) =
∑

α≡2 (mod 6)
β≡1 (mod 4)

(−1)(α−2)/6 Im
(
(α + iβ

√
3)n
)

q(α2+3β2)/12.

Then C14(6n + 6|τ)/η14(τ) is a modular form of weight 6n on SL2(Z).

In order to prove Theorems 7.1–7.7, we first recall some properties of a
class of theta functions studied by B. Schoeneberg [32].

Let f be an even positive integer and A = (aµ,ν) be a symmetric f × f
matrix such that

1. aµ,ν ∈ Z;
2. aµ,µ is even; and
3. xtAx > 0 for all x ∈ Rf such that x 6= 0.
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Let N be the smallest positive integer such that NA−1 also satisfies condi-
tions 1—3. Let

PA
k (x) :=

∑
y

cy(ytAx)k,

where the sum is over finitely many y ∈ Cf with the property ytAy = 0,
and cy are arbitrary complex numbers.

When Ah ≡ 0 (mod N) and Im τ > 0, we define

ϑA,h,P A
k

(τ) =
∑
n∈Zf

n≡h (mod N)

PA
k (n)e

2πiτ
N

1
2

ntAn
N .

The result which we need is the following [32, p. 210, Theorem 2]:

Theorem 7.8. The function ϑA,h,P A
k

satisfies the following transformation
formulas:

ϑA,h,P A
k

(τ + 1) = e
2πi
N

1
2

htAh
N ϑA,h,P A

k
(τ)

and

ϑA,h,P A
k

(
−1

τ

)
=

(−i)
f
2
+2kτ

f
2
+k√

|det A|

∑
g (mod N)

Ag≡0 (mod N)

e
2πi
N

gtAh
N ϑA,g,P A

k
(τ).

We will also need:

Lemma 7.9. Let

ϕr,s(n; τ) =
∑

α≡r (mod 12)
β≡s (mod 12)

(α− iβ)ne
2πiτ
12

1
2

6(α2+β2)
12 .

Then

ϕr,s(4n; τ + 1) = e6πi(r2+s2)/122
ϕr,s(4n; τ)

(7.1)

and

ϕr,s

(
4n;−1

τ

)
=

(−i)τ4n+1

6

∑
(u,v) (mod 12)

(6u,6v)≡(0,0) (mod 12)

eπi(ru+sv)/12ϕu,v(4n; τ).

(7.2)

Proof. These follow from Theorem 7.8 on taking

A =
(

6 0
0 6

)
, h =

(
r
s

)
, g =

(
u
v

)
, y =

(
i
1

)
,

N = 12, k = 4n, and f = 2. �

We are now ready to prove Theorems 7.1–7.7. We shall give a detailed
proof of Theorem 7.6. The details for the other theorems are similar.
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Proof of Theorem 7.6. From the first example following Theorem 4.2 and
the definition of C10(4|τ), it follows that

(7.3) C10(4|τ) = 24η10(τ).

Next, observe that

C10(4n|τ)

(7.4)

=
1
2i

 ∑
α≡1 (mod 6)
β≡4 (mod 6)

(α + iβ)4nq(α2+β2)/12 −
∑

α≡1 (mod 6)
β≡4 (mod 6)

(α− iβ)4nq(α2+β2)/12


=

1
24n+1i

 ∑
α≡8 (mod 12)
β≡2 (mod 12)

(α− iβ)4nq3(α2+β2)/122 −
∑

α≡2 (mod 12)
β≡8 (mod 12)

(α− iβ)4nq3(α2+β2)/122


=

1
24n+1i

(ϕ8,2(4n; τ)− ϕ2,8(4n; τ)) .

Equation (7.1) implies

(7.5) ϕ8,2(4n; τ + 1)− ϕ8,2(4n; τ + 1) = e5πi/6 (ϕ8,2(4n; τ)− ϕ2,8(4n; τ)) .

Equation (7.2) gives

ϕ8,2

(
4n;−1

τ

)
− ϕ2,8

(
4n;−1

τ

)
= − iτ4n+1

6

6∑
j=1

6∑
k=1

(
eπi(4j+k)/3 − eπi(j+4k)/3

)
ϕ2j,2k(4n; τ).

If we use the relation ϕr,s(4n; τ) = ϕ12−r,12−s(4n; τ) and simplify, we find
that

ϕ8,2

(
4n;−1

τ

)
− ϕ2,8

(
4n;−1

τ

)
= − iτ4n+1

6

(
4(ϕ2,4 − ϕ4,2)(4n; τ) + 2(ϕ8,2 − ϕ2,8)(4n; τ)

+2(ϕ12,2 − ϕ2,12)(4n; τ) + 2(ϕ4,6 − ϕ6,4)(4n; τ)

+2(ϕ6,12 − ϕ12,6)(4n; τ)
)

.
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It is easy to check that

ϕ2,12(4n; τ) = ϕ12,2(4n; τ),
ϕ4,6(4n; τ) = ϕ6,4(4n; τ),

ϕ6,12(4n; τ) = ϕ12,6(4n; τ),
ϕ2,4(4n; τ) = ϕ8,2(4n; τ),
ϕ4,2(4n; τ) = ϕ2,8(4n; τ).

Therefore
(7.6)

ϕ8,2

(
4n;−1

τ

)
− ϕ2,8

(
4n;−1

τ

)
= −iτ4n+1 (ϕ8,2(4n; τ)− ϕ2,8(4n; τ)) .

Equations (7.3), (7.4), (7.5) and (7.6) imply that the function

F (τ) :=
C10(4n|τ)

η10(τ)

satisfies the transformation properties

F (τ + 1) = F (τ), F

(
−1

τ

)
= τ4n−4F (τ).

That is, F (τ) is a modular form of weight 4n−4 on SL2(Z). This completes
the proof of Theorem 7.6. �

8. The twenty-sixth Power of η(τ)

The analogue of (1.2) for the 26th power of η(τ) is:

Theorem 8.1. For n ≥ 1, the function

1
η26(τ)

(
C∗

2 (12n|τ)
36n

− (−1)n C2(12n|τ)
26n

)
is a modular form of weight 12n− 12 on SL2(Z).

Proof. Calculations using Theorems 7.1 and 7.2 imply that the first few
terms in the q-expansions are

C2(12n|τ) = (−64)nq1/12
(
1−

(
(2 + 3i)12n + (2− 3i)12n

)
q

+
(
512n − (4 + 3i)12n − (4− 3i)12n

)
q2 + · · ·

)
,

C∗
2 (12n|τ) = (729)nq1/12

(
1−

(
(1 + 2i

√
3)12n + (1− 2i

√
3)12n

)
q

−512nq2 + · · ·
)
.

The q2 terms in the two expansions are different because ((4+3i)/5)12n 6= 1
for any integer n [25, Corollary 3.12]. Therefore C2(12n|τ) and C∗

2 (12n|τ)
are linearly independent. It follows that

1
η2(τ)

(
C∗

2 (12n|τ)
36n

− (−1)n C2(12n|τ)
26n

)
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is a cusp form of weight 12n on SL2(Z), and so must be of the form η24(τ)F ,
where F is a modular form of weight 12n−12. This completes the proof. �

Corollary 8.2.

η26(τ) =
1

16308864

(
C2(12|τ)

64
+

C∗
2 (12|τ)
729

)
.

Proof. Take n = 1 in Theorem 8.1 and observe that

(2 + 3i)12 + (2− 3i)12 − (1 + 2i
√

3)12 − (1− 2i
√

3)12 = 16308864.

�

Corollary 8.2 was discovered and proved in [8]. An equivalent form of
this identity had been discovered in 1966 by Atkin [2] (unpublished), and
the first published proof was given in 1985 by J.-P. Serre [33]. The proof we
have given here is different from those in the literature.

Here is the analogue of (1.1) for η26(τ).

Corollary 8.3. Let n and ` be integers satisfying n ≥ 1, ` ≥ 0, and define

S26(n, `) =
(

q
d

dq

)`(C∗
2 (12n|τ)

36n
− (−1)n C2(12n|τ)

26n

)
.

Then

(8.1) S26(n, `) = η26(τ)
∑

i+2j+3k=6(n−1)+`

aijkP
iQjRk,

where aijk are rational numbers, and i, j and k are non-negative integers.

Proof. This follows immediately from Theorem 8.1 and the Ramanujan dif-
ferential equations. �

9. Concluding remarks

9.1. Lacunarity and the Hecke operator. By a theorem of Landau [3,
p. 244, Theorem 10.5], all of the series S2(2m, 2n), S4(2m, 2n+1), S6(2m+
1, 2n + 1), S8(2m + 1, 2n), S10(2m + 1, 2n + 1), S14(2m + 1, 2n + 1, `) and
S26(n, `) are lacunary. Hence the corresponding expressions on the right
hand sides of (3.1), (4.1), (5.6), (6.1)–(6.3) and (8.1) are lacunary.

Let us write

S14(2m + 1, 2n + 1, `) = Aq7/12
∞∑

k=0

a(k)qk,

where A is a numerical constant selected to make a(0) = 1. Then the
technique used in [12] implies that if p ≡ 5(mod 6) is prime, then

a

(
pk +

7
12

(p2 − 1)
)

= (−1)(p+1)/6p6(m+n+1)+2`a

(
k

p

)
.

Similar results for S2, S4, S6, S8, S10 and S26 may also be written down.
These results generalize a theorem of M. Newman [24].
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9.2. Ramanujan’s τ function. Ramanujan’s function τ(n) is defined by

q

∞∏
n=1

(1− qn)24 =
∞∑

n=1

τ(n)qn.

If we multiply the results for S10(3, 1) and S14(1, 1, 0), we obtain

η24(τ) = − 1
180

∑
α≡1 (mod 6)
β≡4 (mod 6)
γ≡2 (mod 6)
δ≡1 (mod 4)

(−1)(γ−2)/6αβ(α2 − β2)γδ(γ2 − δ2)(γ2 − 9δ2)

×q(α2+β2+γ2+3δ2)/12.

If we extract the coefficient of qn on both sides we obtain

τ(n) = − 1
4320

√
3

∑
(−1)(γ−2)/6Im

(
(α + iβ)4

)
Im
(
(γ + iδ

√
3)6
)

where the summation is over integers satisfying

α2 + β2 + γ2 + 3δ2 = 12n,

α ≡ 1 (mod 6), β ≡ 4 (mod 6), γ ≡ 2 (mod 6), δ ≡ 1 (mod 4).
This is different from the representation given by F. J. Dyson [13, p. 636].
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